EDITHA %

A REVISION OF THE FYLSTRA KIM-1 EDITOR PROGRAM

BY H.T. GORDON

College of Natural Resources
University of California
Berkeley, CA 94720

Dear Jim, Tom, et al., Received: 78 April 3

I am herewith submitting an extensive recoding and
enhancement of the editor section of Dan Fylstra’s SWEETS
program for the KIM-1, published in (and copyrighted by)
BYTE. It poses several dilemmas of general interest. First, the
problem of program names. SWEETS is Fylstra’s acronym for
2 main programs, that share some subroutines. The entry label
for the editor (the only one I have worked on) is CMD. I have
given the more descriptive name EDITHA to my revision, on
the grounds that its coding is mostly quite different and that it
includes some major innovations (address information and
modification capability, greater error-protection, and a richer
command structure with modes not found in CMD). It is
clearly an enhancement of the kind that Fylstra himself antici-
pated would grow out of CMD. I hesitated before adopting the
name EDITHA, since renaming can easily become an idiotic
game, involving personal vanity, causing confusion, and even
trying to disguise software theft. I have restained many of
Fylstra’s names in EDITHA whenever my recoding did not
involve a major functional alteration, both as a courtesy to the
originator of the basic concept and as an aid to comprehension
by users. One of his subroutines (DETLN1) is an inefficient
way of determining the bytecount of a 6502 opcode. In
EDITHA I have replaced DTELN1 logic by the decoding logic
of my subroutine BYTCNT (published in DDJ # 22), with
minor retailoring to fit the special context. I re-use the name
BYTCNT for this trivial modification, because I think it is
better to extend the meaning of a subroutine name to include
minor variations, instead of endlessly coining new names.
There are, alas, no rules defining how great a dissimilarity is
needed to justify a new name.

The second dilemma is the perennial one of software
ownership. I assert copyright (qualified by a special non-
monopolistic free-diffusion clause) for all components of
EDITHA not either previously in the public domain or copy-
righted by someone else. Exactly what these are is a moot
question. Very little of the original CMD coding is left intact
in EDITHA. None of the alterations is anything but function-
al (i.e., there is no intent to evade existing copyright by mere
recoding). None is copied from any work I have had access to
(although since there are relatively few ways of doing some-
thing efficiently, it is not impossible that some coding is an
independent recreation of already existing logic). Here is the
qualifying clause: The intent of my copyright is to remove all
impediments to free diffusion, including (to whatever extent
my copyright gives me leverage to do so) impediments that

others may wish to impose on enhanced or different imple-
Page 34

Dr. Dobb’s Journal of C: Calisth:

mentations, including systems other than the KIM-1. I ther-
fore authorize any and all uses (including copying in any form,
publication in whole or in part, and commercialization) if (and
only if) all software associated with the EDITHA coding is
declared to be equally available for totally unrestricted use.
What I am trying to ensure is not only that my copyright will
be no bar to progress but that it shall serve as an aid to it.
Perhaps this is Utopian, but there’s no harm in trying! It
would be a tragicomedy if micro software had to be diffused
underground, in the style of Russian samizdats, as a response
to the censorship aspects of copyrighting.

The third dilemma is: where should revision of a program
published in BYTE be published? First, let me say that I con-
sider BYTE a valuable journal. I have had a note (on 6502
opcodes) published in it, and a second one (on a pseudoran-
dom number generator, 8080-coded) is accepted and will
(eventually!) get published. There are some advantages (a
small remuneration, glossy paper, and a very large readership)
and some disadvantages (among them are: loss of all rights to
your work, and often long publication delay, and no indica-
tion of the date of receipt of articles). On the whole, my
relationship with DDJ has been a more humanly satisfying
one. Friends have told me its ftitle is zany (but to me it’s
whimsical — I reserve zany [and its synonyms| for a world with
tens of thousands of megatons of hydrogen bombs poised for
launching). But publication is prompt, always includes date of
receipt (a fine ethical touch), and the author retains the rights
to his work. These small-is-beautiful qualities compensate for
inexpensive paper and no remuneration!

Sincerely,

H.T. Gordon

The SWEETS machine-language editor program CMD,
created by Dan Fylstra (Feb. 1978 BYTE) is a major enhance-
ment of the KIM-1 SBC. However, it has some coding inef-
ficiencies, logic errors, and other limitations. The major ones
are its inability to allow manipulation of addresses (only pro-
gram instructions can be seen in the KIM display, and the lack
of adequate safeguards against user errors. It is all too easy to
ignore the CMD error-waming and cause disastrous upmoves
or downmoves of immense blocks of RAM, including the CMD
program itself. My revision gradually became a major overhaul,
involving drastic alteration of both the main program (whose
entry point I have renamed EDITHA) and the subroutines.

Insofar as possible, EDITHA (version 1.0, intended for the
basic KIM-1) is located in the same memory areas used by
CMD. This conforms with Fylstra’s intent of leaving a large
block of RAM free for new program construction under editor
control. However, the enhancements provided by EDITHA
increase its length to 478 bytes (71 more than CMD), and its
subroutine READIN had to be located in 0200-0234. This
leaves only the 459 locations from 0235-03FF free.

228

& Orthod

Box E, Menlo Park, CA 94025 Number 25

The revision relocates the original CMD pointers in zero-
page: MOVAD (to DE-DF), BEGAD (to E0-El), CURAD
(to E2-E3), ENDAD (to E4-ES), and adds a new one, LIMAD
(at E6-E7). This allows operation of a new guard subroutine,
INLIMT, that protects memory locations outside preset pro-
gram limits from being moved or overwritten. BEGAD is
redefined as one location below the program start (lowest)
address. LIMAD must be set 2 locations below the highest
address that the program can enter. BEGAD and all lower
memory locations, and LIMAD+3 and all higher memory
locations, cannot be altered or moved by EDITHA. The guard
subroutine blocks the action of the DA (delete instruction)
key unless BEGAD < CURAD < ENDAD. In addition, it
blocks the AD (add instruction) key unless ENDAD < LIMAD.
When these conditions are not met, the only effect of pressing
either key is to display CURAD in the usual KIM address dis-
play, and EE in the data display. CURAD is the address of the
instruction currently displayed, that EDITHA is refusing to
add to or delete. The same message will be displayed if any
hex key is pressed when EDITHA is in the command-entry
mode, but in this case the EE does not signify that CURAD is
out-of-bounds but that hex keys cannot be interpreted and
are being rejected.

Although EDITHA has instructions that allow the user to
alter BEGAD or LIMAD, they are normally fixed and define
the program limits. As in CMD, CURAD is advanced to the
next higher instruction when the + key is pressed. However,
while the + key is depressed, EDITHA displays the address of
the next instruction (that appears when the key is released).
If this address is within limits, 03 appears in the data display,
but if it is out-of-bounds, EE is displayed.

During program writing, CURAD does not change, but
ENDAD moves upward when AD is used to insert an instruc-
tion and downward when DA is used to delete the instruction
currently in CURAD. If deletions exceed insertions, ENDAD
may move below CURAD, and thereby block the action of the
AD and DA keys. This is no problem, since the user can press
a hex key to see where CURAD is and then use the pointer-
resetting instruction to set ENDAD to a higher location. In
fact, it is sometimes useful to set ENDAD to the program start
address, so that the user can explore anywhere in memory
with no risk of altering programs by accidental pressing of the
AD or DA keys.

The operational changes in the + and DA key actions are
achieved by quite trivial modification of the original (much
less informative) CMD error-message, together with continual
supervision by the guard subroutine. Users may notice one
more trivial change: one-byte displays by EDITHA are of
normal brightness, while those by CMD are extremely bright.
CMD refreshes one-byte displays 3 times as often as 3-byte
ones; this may or may not shorten the life of the LEDs, but
I found it unpleasant. Therefore EDITHA inserts a very brief
dark period in every refresh of a one-byte display. Both CMD
and EDITHA display two-bytes at about 1.5 times normal
brightness.

Implementation of Complex Commands in
the AD and GO Operations.

Unlike the + and DA operations, which are simple com-
mands executed by pressing one command key, the AD and
GO operations require complex commands. Both call sub-
routine READIN, since the user is expected to key in more
information. Although much more complex than its equiva-
lent in CMD (subroutine RDBYTE), READIN also calls sub-
routine SCAN1 twice. Unlike RDBYTE (that always error-
exits if a command key is pressed), the first call to SCANI by
READIN will accept either a hex or a command key, the lat-

Number 25 Dr. Dobb's Journal of C: Cali

& Orthod

ter causing a return for interpretation by the calling routine.
If the first key is hex, the second call to SCANI1 ignores all
command keys but returns when a hex key is pressed, insert-
ing the completed byte in the leftmost display (all others
blank). ADKEY logic interprets this as an opcode; if it is a
one-byte opcode, it is inserted in the program and the oper-
ation is over. If it is a two- or three-byte opcode, READIN is
again called so the user can complete the instruction. At this
point, it is possible to press a command key and cause a
return. In version 1.0, EDITHA interprets such command-
hex-command instructions as errors, simply wiping them out
as if they had never been keyed-in at all. In an expanded
version, however, more complex interpreting logic could open
a cornucopia (or a Pandora’s box?) of special commands. Very
few of these possibilities are realized in version 1.0. One reason
is the memory limitations of the basic KIM-1. Another is that
I am not sure how powerful a machine-language editor ought
to become,or what operations will prove to be the most useful.

The AD Key Operations

Pressing the AD key has no detectable effect if CURAD is
within limits and the instruction currently in the display is
one-byte. If it is two- or three-byte, it is left-shifted so that
only the previously rightmost byte appears in the leftmost
display (all others blank). When the opcode is keyed-in, it
replaces the displayed byte. If it is a one-byte opcode the
instruction is complete and written into the program (and
being displayed by the program-scanning subroutines). Pres-
sing a hex key will cause the usual error-display of CURAD.
If the opcode is incorrect, it can be deleted by pressing the
DA key.

If the opcode requires 1 or 2 operand bytes, pressing any
command key will cause an error wipe-out (a quick way to
erase a wrong opcode). If a hex key is pressed, nothing will
happen until a second hex key is pressed. If the opcode was
two-byte, the second keyed-in byte will appear in the
middle display (normal order, an indication that the whole
instruction has been written into the program). It can be
deleted by the DA key. However, keying in the first operand
of a three-byte opcode will cause the opcode to shift to the
middle display and the operand to appear in the leftmost
one (reverse order, instruction not yet completed). Again,
pressing a command key will cause a wipeout. Keying in the
third byte (second operand) will cause display in normal order
(instruction written-in, deletable by DA).

A peculiar “double-command” operation is also possible,
executed if the AD key is pressed rwice (pressing AD, then any
other command key, has the same effect but the AD-AD is
safer). The effect is to insert the single-byte in the display
(following the first AD) in the program, “completing” the
instruction. The AD-AD operation is useful only if the instruc-
tion in the display before the first AD was a one-byte opcode.
1t allows duplication of this opcode, a convenient way to enter
a string of one-byte opcodes (00, OA, 4A, EA, etc.). The
AD-AD was not a planned feature of EDITHA, but an
accidental consequence of the planned GO-AD (to be
discussed in the next section), retained because its implemen-
tation requires very little interpreting logic.

The GO Key Operations

These represent by far the most complex EDITHA enhance-
ments, that still are only a minute fraction of alegion of pos-
sibilities. The only “double-command” is the GO-AD (the
other 3 possible ones are interpreted as errors). This sequence
of 2 command keyings resets CURAD to the program start
(one location higher than BEGAD). (Note that, although the
command keys are read by the KIM monitor subroutine

Box E, Menlo Park, CA 94025 Page 35

229

GETKEY as hex numbers from $10 to $13, the READIN
decoder subtracts 4 from these values and returns command
codes from $0C to $OF to the GOKEY routine.)

All other GO operations require keying-in 4 hex bytes for
completion, the first 3 appearing in the display one after
another, in reverse order. Wipeout can be caused by pressing
any command key following entry of any byte into the dis-
play. The terminator byte (not displayed) is the command
code that will cause execution of a special operation. Since all
non-interpreted command codes cause an error-message, it is
useful to keep the final key of this code depressed so that it
can be seen displayed. If there is no error-message, the com-
mand has been executed. Error-messages are always XX 04 EE,
where XX is the command code that could not be executed
(except for codes 04 and 08, where XX is 00). The following
is a list of the 5 valid command modes, with their codes:

Mode I, code 00

This is the ERASE command, that restores the original status
before the GO key was pressed. Although the “wipeout”
feature of command keys (a later development) makes it
unnecessary, it might be useful in later versions.

Mode II, codes 01 to 03

These are IDPR (insert data into program) commands, 01
inserting only the first keyed-in byte (rightmost in the dis-
play), 02 the first and second, 03 all three. Before completion,
display is in reverse order. When the command is completed,
the inserted bytes will be displayed in normal order (as with
the AD operation) but interpreted as data. Thus the sequence
of keyings: GO-08-18-28-03, that is displayed as 28 18 08
before the command code is entered, will be displayed as
08 18 28 afterward. This sequence would need 3 separate
entries in the AD operation, since all the entries are one-byte
opcodes. Also, the entire sequence can be deleted by pres-
sing the DA key once (if there has been an error).

In both CMD and EDITHA, to add a new program or data
sequence following the one in the display, one must first press
the + key to advance CURAD. This is necessary to allow the
user to see in the display exactly what he has entered. In the
EDITHA IDPR Mode II, all bytes that will be entered (and
with codes 02 and 01, some that will not be) are visible in the
display before the command is keyed-in, although in reverse
order, Some users may wish to implement an automatic
advance, so that more data can be entered by the Mode I1 GO
without having to press the + key. This can be done by replac-
ing the BEQ DACMD at 017B by a BEQ STPKEY (FO0 37).
The disadvantage is that one will not see displayed what has
been entered, and not have a second chance to delete an erron-
eous entry.

Mode IlI, codes 05 to 07 and 09 to 0B

These are program SEARCH commands, with some kinship to
the GO operation in CMD. There is unnecessary redundancy
here (05 =09, 06 =0A, 07 = 0B) that saves a little GOKEY
interpreting logic, but could be eliminated in expanded
versions if codes 09 to OB can be given another useful inter-
pretation. One major difference from the search GO in CMD is
that searching is done in the range from the current CURAD
(the address of the instruction that was in the display before
the GO) upward in memory to ENDAD. To search the entire
program, one must first reset CURAD to the program start by
a GO-AD. The reason for this modification is that the same
instruction may recur several times in a program, and the GO
logic in CMD can only find the first occurrence. When using the
EDITHA search GO, the user should keep the final command
key depressed. If a match is found, the display will show the
address of this instruction that will be displayed when the key
is released (while the data display will show the number of

Page 36 Dr. Dobb’s Journal of C Cali

& Orthod

bytes that were searched for). If this is not the one wanted,
press the + key and redo the search GO to find the next
identical instruction, higher in the program. If there is no
match, the operation will display the ENDAD address,with EE
in the data display.

The second major difference from CMD is that EDITHA
can search for only the opcode (code 05), for the opcode and
one following byte (code 06, identical with the CMD search
GO), or for the opcode and two following bytes (code 07).
E.g., the key sequence GO-85-FB-60-07 requires that an 85
FB 60 sequence exist in the program. This happens to be the
terminal program sequence in the KIM monitor ROM. An
interesting test of searching speed is possible if one sets
BEGAD to 03FF, CURAD to 1FD4, and ENDAD and LIMAD
both to 1FDS. When EDITHA is entered (set address to 019A
and press GO) it will display the RTS (860 at 1FD4. A
GO-AD sends it to 0400, and 0404 is displayed (although of
course there is nothing there in the basic KIM). The GO-85-
FB-60-70 keying sequence will darken the display for less
than a second, then (with the final key still depressed) display
LF D2 03. This is the addresss of the last 85 FB instruction in
the ROM, that appears when the 7 key is released. Nearly 7K
of (mostly non-existent!) memory has been subjected to a
complex search in a reasonably short time. If one uses the 06
command code to search for only 85 FB, one can find 5 recur-
rences of it lower in the KIM ROM than the terminal one.

Mode IV, code OC

This works exactly like the GO-AD double-command. It was
the awkwardness of resetting CURAD to the program start in
this way (or in another way possible with Mode V) that led me
to develop the GO-AD. In the original CMD design (largely
retained in this pioneer version of EDITHA), keyings are
recognized in 2 different ways. CMD calls the program-scanning
routines that maintain display of the instruction at CURAD
and detect a depressed key, which causes a return for interpre-
tation by CMD logic. Hex keys are rejected (an EE EE EE
error-message being displayed while they are depressed), while
each of the 4 command keys causes control to shift to a
special routine. With more elaborate logic, one could interpret
double-commands here (or even, if one were ambitious, triple-
commands). It would be a cleaner way than that in version
1.0, which re-uses the scaffolding of a primitive approach to
implement a more sophisticated one (just to avoid one more
reconstruction job).

The second kind of key-recognition in CMD is done by the
GOKEY and ADKEY routines, via subroutine RDBYTE,
which error-exits if a command key is pressed but accepts
keyed-in hex bytes. My decision to implement double com-
mands here was based on the fact that I had already included
a lot of command-code interpreting logic and it was very
simple just to modify READIN slightly. When I started out to
revise CMD, I did not have a clear idea of how it worked and
never dreamed that it would go so far! The structural flaws in
EDITHA (1.0) are the result of its just growing like Topsy,
with its growth halted when it started getting too big for the
basic KIM-1.

Mode V, even-numbered codes from $10 to $8E

These are IDZP (insert data into zero-page) commands (64 in
all), that write the first 2 keyed-in data bytes into contiguous
zero-page locations specified by the command code. E.g., the
keying sequence GO-12-34-10-10 will cause $34 to be writ-
ten in location 0010 and $12 in location 0011. Before the
keying-in of the command code 10, the first 3 bytes are dis-
played as 1034 12 (reverse order); this is wiped out by the
command code, since nothing is entered into the program.
Since the effect is not visible and one has to be extra careful
with zero-page, the third keyed-in (and so displayed) byte

230

ia, Box E, Menlo Park, CA 94025 Number 25

must be identical with the final command code that causes
execution. If it is not, an error message is displayed while the
final command key is depressed to indicate a total wipeout.

Because important subroutines are located in zero page
(0080 to 00D4), command codes 80 to 8E skip these loca-
tions and write into locations 00D8 to OOE7. E.g., the
sequence GO-1C-00-8A-8A resets CURAD to address 1C00
in the KIM ROM, causing display of the instruction there.
This program can then be scanned by the + key, since
EDITHA does not object to its user going anywhere in mem-
ory just to look at it. Before wandering around in memory,
ENDAD should be reset to the program-start address (easily
checked by a GO-AD), using the 8C (reset ENDAD) command
code, to “disconnect” the AD and DA keys. Codes 8E (reset
LIMAD), 88 (reset BEGAD), and 86 (reset MOVAD) will be
less often needed, and the 3 lower pointers (80, 82, 84) are
available for future enhancements.

Some General Commands on the Listing

Since EDITHA interacts with molasses-slow human opera-
tors, it is not designed for speed but emphasizes coding
efficiency, error-protection, and convenience. One major sub-
routine (ASCNIT, 0100 to O11E) is not listed because its
coding is basically identical with that of the Fylstra-BYTE
copyrighted CMD (located in the original at 0103 to 0121)
except that the downward relocation in EDITHA requires
that the 3JSRs to SCAN3 be coded as 20 1F 01 instead of the
original 2022 01. The relocation is functional, since the
JSR DETLEN that is the first instruction of the CMD sub-
routine SCAN is now the second instruction in EDITHA (at
019B), so that the third one (JSR SCANIT, labeled DACMD)
can be branched to to cause a display not interpreted as an
instruction. My omission of SCANIT may strike some readers
as ridiculous, but the intent is to avert the wrath of whatever

gods EDITHA may offend! It also underscores the reasons for
the free-diffusion conditions (spelled out in my covering
letter) attached to my own copyright.

Listings therefore start at O11F (SCAN3), that is signifi-
cantly modified in order to reduce the brightness of single-
byte displays (the JSR ONE just kills a little time). To be
punctilious, I note that the terminal coding of the EDITHA
subroutine MVDOWN (00C9-00D4) is identical with that of
the CMD subroutine ADVAND. It seems to me that the logic
of adding an 8-bit number to a 16-bit number is so commonly
used that it is in the public domain.

Since keying in 478 program bytes into a KIM is a head-
ache, I am willing to tape EDITHA for KIM users who would
like to try it out if (1) they mail a blank cassette to me, with
a stamped self-addressed envelope that [can return it in, and
(2) they agree to inform me of any flaws they may discover in
operation (afrer checking the RAM to make sure the listing is
correct). Regrettably, I can not be responsible for any failures
of the U.S. Postal Service, and this approach will not be usable
by users outside the USA. The taping will be in the standard
KIM format (slow but sure) in 2 sections: 0080-0235 (index
01) and 1780-17E3 (index 02). I am not eager to do this
hundreds of times, but fortunately this is an unlikely event!

Comment on Enhancements

As I have indicated, EDITHA has many possibilities for
restructurings and new operations, and everyone is free to do
whatever he or she likes. It is quite possible that someone has
already written something as good as or better than EDITHA.
More likely, every further revision will have some fine ideas of
its own that ought to be in the ultimate version(s). Perhaps
DDJ can serve as a clearinghouse for pooling these ideas, and
thus hasten development of a super-version (that will merit a
super-name!).

-
e~ o~
— —_~ ~do » —~——
— —~ 2 ~ o BmH B~ A
— — O n—~3 M g0 — OO0~ & dO o~
2 e~ g —~~ 0K~ —~ OHAZIP PO THE~P
— i) PO~ 0~ Eg pg: 0 [03 mp ﬂméﬁﬂ
o~ W —~dT 0L o m5 =R B N OT O ~ oMY
L 3 0408 oI £ a0 o K A Q 1omw vl g o
B o bpagkdad &) O Op A © O goL 0 S o
O~ 2 o Q0 g O <+ o o O3 o &
1 b oH0 E& & gX oM 0O OPHH-NNO WL OEO
o] T _$0gO0 a.d o L0 o+ © cazgu £ wow
ekl ©® £ TKHK OO [5] 3 2 P —~ I 0O o & O
N O + odoo© © o4+ QT O pg O QW H = E QO o -
] h HOogow o hg R N A -0 0O QN e
Lo a —e g =0 o R » o Q =P m 3 g 00O
HE E-~H0u £ oo =§ a J3OHA HPP A @
L a M M mn::g ~0 kMW o Hed O OAKS T OO dF0g—
0 — S S O a oo~ g~ dd T—08«H g PO~
3{!13 = a = Frig=1 - ~— gvz e} P i vnv-.ﬂ_‘ EV iﬂ'!ﬂ
N~z é HE g%qﬁigq ~pHH o4Q QE ogmHmEa vmﬁ ©
| O [=] a - —Madm< b A |OO OHa og]
EoggpRARl BeBEs TAZREAE B3 B3 ef eBEcEES TEflE
M3 = ORrde oy M —HO aaqamg HOMm vﬂ Sim SR g %ﬁxmw
wggmneta:n:m KH<D§§§&IO‘D:D$VIO KL MO N0 mol’ﬂﬁ%ﬂ:lﬂ QCfﬁtam
(2] HOER = NnNnoo [E2] & =0 nuo A
BU naamhm aaaomHgﬁﬁhhmm BMh gm 08 um%a Y] 5Emom
H <A ™ <] o] 5] E
=l (&)
SES 8 g H : B
o O g ﬁ %] = =) a
O 0 w0 m o [<) 5
(2] = [.] (4]
o o~y = =~ o ~
— - o - w —
D~ NE O~ D M= OO nos Qoo = B ®mn o<gm o9 o fiey
maagubdw m&mga fry 00 O M0 §§a n AN agm mwg a:@ﬁm
BNCAVE VAR ERRRERR® o' ®© o [l =) = owvwnE R
ISRRNYZERT LSHARTCSRRINBR Y8R LR TB TRRIBIR IRISR
| LD EmHMONOCORN N0 E RS ~agO BN INW O O FASNMND oEwN
|a s ﬂNNNNﬁNNm ﬂmmnmmmﬂ §ﬁ§ﬁ gmm N NI N0 0000 3o©hﬁ
A A Adddddddd A A~ A A A AAAAAAAd AdAAAd
B S S EEEEENEE SR NEIEHREENIEEREE IEE S E AN Runaunannm aununm
Number 25 Dr. Dobb’s Journal of C Calisth & Orthod Box E, Menlo Park, CA 94025 Page 37
231

(¥0 ST Y3Ty) ZNION
(MOT s3es8ed) Qvund
(3ae3s weaJoad enag)
ayoEg
T+avoEe
(XeTTEBO 019 uanjzed)
(enutjuoo ‘ou) ZHYXEN
(&INNOD = X ST) INAOD
(X = 3snu SATXE) SELAD
junodeq fq pmmw INOTLAH
epoodo ue jou) JINSIO
(av 9saty ATuo g=) INNOD
(do 4¥eu J0J ¥ jUewaeJout)
"Kerdstp ogquy e3fq) XENI
(X 090ummhw XIANIX
(eTaqfu Iy Ppe) JdNILAY
(ureds Laq ‘ou) QIAVEH
(sfex xoy ®) PT $#
(£Lex puooes pwed) TNVOS
(e1aqfu TUu ea®ms) JRALAY
v
Y
Y
(e1qafu Ty ojut x8y) V¥
(I8TTB2 04 uanjed)
(11 = °ov f3omasqus) H #
(X ego3sea ‘ou) YHANIX
(241 esn ‘sef) JJIHS
(éLex xey ®) g1 $#
(£Lex 98477 pwed) TNVIS
nx mmbﬂmv XEANIX
?@ = mou Y)
B1dsIP) SHLAL
T#

(e3dq T
(T 03 X 388)

(NIQ¥EH eutrqnoaagns

(ae11®2 03 uanjed)
(e3£q axeu ‘g #£) ITHOIS
(ue3atam T1® ‘g = JT)

(dnxqotd g3xeu Jo0J)
(ur 97 eqTam) X (avuno)
(e3£q dnxotd) H.Mz%
(e31am o4 sejkq #) SHLAD
(eomds dn uedo) NMOQAW

(409TpPe 04 HO®BQ) VHIITH
(3nduy e3tJam) NILIHM
(31xe ‘gQy-Qy 30u) YOHHE
(@@ sem Y ‘qy-av Jt)
(30 ‘xey-TT®) IJHDOV
(andut £Ley 3e88) NIQYHY

aNd
XLs
XNI
Xal
AdT
SIy
HNg
Xdo
XIS
gse
aNd
Xq1
XNI
YIS
Xa1
Yyo
sod
dWD
ysr
YIS
I8V
T8Y
1SV
1SV
SIY
0ds
Xal
00d
dHWD
ysr
pons
¥aa
XIS
Xa1

SILH
INg
pciay
ANI
YIS
Yal
Aq1
Xa1
ysr

bag
usre
PEC
plecel
baEd
HSe

18

ga

NIDEE 13
1a
v
dINSdo ga
2]’}

6d

6%
64

og
6%

olavay 1¢

LIIHS

IHQVIY 1@
KXAN

NIQvay

La

LIHOLS @@
NIIINM @@

vd
fijcH
cd

L4300V TP

€@
2g 8¢

ga Llglt
98 SBit
mw tglt
28LT
v gLt
g9 heeg
ga zezp
Ta geed
2
ga 6z22@
v L2z2g
ga 9z22¢
56 tizzg
vV 2228
¢ @228
ga Fied
60 012
gz 6128
sg Lieg
u o
v 12
Vg Tizg
vg f1eg
g9 2120
6% @12P
9y dgeg
g6 ogz@
60 Vgzg
gz Lozg
98 S@cP
vo tfgeg
98 <cdzg
A SNl
J0J Butpod)
249 @418
ga =AY
vo aH1g
g0 OH1P
16 VI8
64 LA
gy SHIP
9y £3TP
gc gd1g
gd =ATY
g2 4daig
g1 6dIg
Yo gaig
gd 9a1g
gz caip

(@@ ©3 s3e8) INNOD

(aTx8 ‘ou) TYAQY

(&30 ©37am) SLIWIT
(I03Tpe 03 ¥9®q) VHIICH
Mumon sT Koy eTTum) THMMH
e¥essew L8TdsTpP) SOANYDS
§80apps) HINIO
§86Japp®8) TINIOJ
X £e1dsTp) HNI
Lerdsip) @E $#

uB q0u) KHOANI
(M w) T+av¥nd
(peke1dsTp eq 04) QYD
(epoado gxeu 03) DNVAQY

(a0aae

(euop oq 3,uU®d) TYAQY
(euop “J0) YHLIQH
(uot3eTep XEMVA) dNTAOKW

(91$ = Leox av) XaaQy
(£ey xey Kuw) TYAQY
gT $#

(€1$ = £oX 0D) EMIOD
(21$ = £ox +) XDIAIS
zT $#
IINYOS

(seq£q epoodo q03) NATIFA
(epow TBUIO®P JBETD)

(®37am 47aI) Y‘ESVEIH
(puooss dnxotd) TINIOd
Maaan dZar). X*T+ISYEIH
e3hq 3saty dnyoid) HNI
(¥eputr ¥ 09 pUBWWOD 9AOW)
(dn-ga$ o3 esteI) g9 $#
(sT s® esn ‘ggd») AAYON
(pusumod eJ0388d) Y
(37xe ‘ppo) ¥OHMH

(i ppo JO0 ueas) Y
(31¥e ‘ou) MOHHMA
(spewatyuod) HINIOd
_(aT¥e ‘sef) WOWHE

(éTy oo3 puswwod) Jg $#

(taenaoqJeT ® 4sul)

(eqep Le1deip) awova
(839p ©3TJaM) NILIUM
(3T¥0 ‘ou) TIYAQY
(&©97am 03 ¥0) SIIWIT
(sdo aoJy ea03s) SHLXG

XIS
00d
usr
dag

usr
VIS

ALS
p ey

sod
val
Xal
ysr

00d
§0€g
usr

forcicy
00d
dWD
04
bag
dWO

ysr
gsr
a1o

Yis
val
VIS
val
X¥l

1dd
ISV
sod
ysT
aNd
dHWD
s0d
dWD

dON

bad
ysr
00d
¥sr
VLS

ADIaV

oy

WHOSINT
Hyouusd

TVAQY
K LS

oo
auova

VHLIQHE

aavox

WOIH

LT

dT

LT

LT

0]
/]

]
LT

1atg

.18

Number 25

Box E, Menlo Park, CA 94025

& Orth

Dr. Dobb’s Journal of C

Page 38

232

T+dVaNI
LHHAAR
avansg
SHLAL
aQYaNE
(QvaNd 3snlpwed)
dOOTAR
(9918 18 @¢ 03) ¥YymIud
T+Q@vanod
(a@VeND=aVAOH T+AVAOK
ueyMm 4TX6 dOOTAN
TTTA STU3) aviand
A° (QYAOH)
(weaBoad SHLAD
eAou X* (QVAOH)
TITA STU3) @ #
QaYAOKW
(@VAON T+aVAOK
quUeWeI08p Xd0da
TITM STU3)
XEOHEA
avaNg
(QVANI=AYAOW T+dVAOW
368 TTIIM SIU3) T+QVANE
(JeTT®2 09 uanged)
(utrede 31 °A®E) JINNOD
(3umooeq£q eaBS) SHLXL
(31%e 2 yzduet)
(31¥e € ysduet)

(euo yj3ueT ‘g= JT) TINO
(B2 s31q utBled) G #
(2 ugduet ‘sef JT) OMIL

(¢T = @ 31a Lruo sT) T #

(g2 s31q urBied) ST $#

2 ST uqduel ‘gf JT) OML

gIeehiL s37a 3503) d6 $#

(€ sT y3BueT) HHAYHIL

(e¥sre a1 ST) @2 $#

(T = £ 379) JOJATVH

(1861 ut gg$) mmm%
T

X (avano)

g #

LEYAAR

Xd0da

dO0TAR

NMOQUAKW

TENO
HHYHL

dOJdTVH

6T
INDLEL

NITIIEA

g oy

IMITNI
(sxoeyop® € J0J) 9 #
(deTTBO 03 uJnijed)

T+aAVaNE
LHHO AR
avang
SHLAE
(QYyaNE=mou Y Ul qvynd)
4007140
T+aYaNa
T+dYAOH
d007TdN
avaNg
T+dYAON
QNEHD

A° (avaor)

o #

A° (avAoW)

SHIXL

avAOH

avano

(430 e3°9T1ep) WITHHd

(aoaxe ‘Laaso aeeT0)
(geTT®2 03 uanjea)
(enutqued ‘g¥) IWITNI

(Joaae ‘=spe JT) XHUuH
(3TXe J0aae) JLHUWIT
X* QVAOKH
(pe o1 3s03) X‘QqVodd
(eJss ST PB 1Y) XHISHL
(371x0 Jodde) LHUWIT
X T+aVAOR
(X Ut 1Y 0A®S)
X T+avoEd
(s@oeyope z aoJ) 1 #
T+aveno
WITHHd
avino
SALXI
avyno

Wnoﬂamu 09 uanged)
(UB1y 3e888d) T+AVHND
(uBTy juewesdUT)

SLINIT
LHENAA

ANIYHD

d00T1dN

dNHEAOH

pctercic
LHUNIT

pehssican

I ITINI
WITHHd

ONVAQY

ANICHN

LT

Lg
9@

Page 39

Box E, Menlo Park, CA 94025

& Orth

Dr. Dobb’s Journal of C:

Number 25

233

